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AN EXPERIMENTAL STRATEGY FOR
FRACTIONATING 32 AND
3* FACTORIAL EXPERIMENTS

Abstract: In the design of statistical experiments, situations
may arise when resource constraints hinder the use of
factorial designs for process improvement. This paper
explores how 9, 18 and 27-run orthogonal arrays compare
against each other and against a proposed experimental plan
referred to as a ‘Segmented Fractional Plan’ when used to
fractionate 3% and 3* factorial experiments. Based on the
analysis of 8 responses from 6 factorial experiments, it was
observed that to identify the process setting that produces the
desired product quality, with a reduced number of
experimental runs, the segmented fractional plan can
perform as well or better than some orthogonal arrays thus,
providing an option for f@ ionating 3% and 3* factorial
experiments. R

Keywords: Three-level fractional factorial designs, three-

level orthogonal arrays, design of experiments, process
improvement, quality improvement.

.
<

4

< -

Q

Process quality improvement hg:})een the
focus of many industries due to the
competitive advantage a process with high
quality can provide (Montgomery &
Woodwall, 2008). Experimentation plays a
major role in improving the quality of
industrial processes. Engineers engage in
experimentation for various reasons. These
include (Dean et al., 2017; Rodrigues &
Lemma, 2015):

e To determine which factors have the
most influence on the process
output;

e To determine the settings of the
influential factors that optimise the
process output;

e To determine the settings of the
influential factors that minimises the
variability in § process output;
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To determine th ings of the
influential fact minimise the
effect of unc&}a lable factors on

the process output.

In improving the quality of a process when
several factors are to be investigated, factorial
experiments are recommended over other
experimental strategies as they can be used to
estimate all factor effects (Montgomery,
2013). However, improving the performance
of a process using factorial designs may not
be possible when resources are limited due to
the number of experimental runs needed to
conduct some factorial designs
(Montgomery, 2013; Wu & Hamada, 2000).

Orthogonal arrays (OAs) and fractional
factorial designs (also OAs) are commonly
used to fractionate factorial designs
(Montgomery, 2013; Wu & Hamada, 2000).
A good OA design can not only reduce run
size and co% but also provide precise
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estimation of factorial effects@ interest
(Tang & Xu, 2014). See (Tutar et al., 2014;
Vankanti & Ganta, 2014) for examples on the
use of OAs for process improvement.

In addition, OAs are used for screening
experiments in which the objective is to
identify the most important factor effects
from a list of many potential ones (Nguyen &
Pham, 2016; Xu et al., 2004). Based on the
knowledge gained from the screening
experiment, the process can be optimised (Xu
et al., 2014). See (Tagliaferri et al., 2013) for
an example on the use of OAs for factor effect
screening.

The focus of this paper is on the fractionation
of 3-level factorial designs for 3 and 4 factors
(3% and 3* factorial designs). Although 3-level
factorial designs are not recommended when
less expensive secondiorder designs can be
used to investigate, ss, 3-level factorial
designs are useful ih situations where the
process settifigs,™ are discrete in form
(Montgom&l& Wu & Hamada, 2000).

In addition,, “practical situations may arise

where. disCrete and continuous factors are ““‘\:‘tobtained from the 3° and 3* full Factorial

%

m»(e\d at three levels. There is no standa.:lil&

proach to analysing experiments in
ituations with  Box-Behnken S
requiring the factors to be HALouS
(NIST/SEMATECH e—handboo@t tistical
methods 2013) and, more recent 3-level
designs (Definitive Screening Designs)

designed to accommodate discrete factors at
2-levels (Jones & Nachtsheim, 2013).

When the aim of the experiment is to identify
factor settings that improve the quality of the
process output, one way to analyse such
experiments is to treat the continuous factors
as discrete. This research focuses on cases
where:
1) the goal of the experiment is to
identify factor settings that improve
the quality of the process output,

A

A 9-run fractional fact@ design is used to
fractionate a 3° factorial design while 9 and
27-run fractional factorial designs are used to
fractionate a 3% factorial  design
(Montgomery, 2013; Wu & Hamada, 2000).
Xu et al (2004) developed 3-level 18-run OAs
for screening important factors from a large
number of potential factors and also detecting
interactions among a subset of active factors
when 3 to 7 factors are to be studied. To
distinguish factorial designs from fractional
factorial designs, factorial designs are
referred to as full factorial designs and the 9
and 27-run fractional factorial designs are
referred to as OAs to simplify discussions on
these designs and the 18-run OA. This paper
analyses eight responses from three 3% full
factorial experiments and three 3* full
factorial experiments using the 9-run OA, the
18-run OAs,0fXu et al., the 27-run OA and a
propos@erimental plan referred to as a

‘Seg

ractional Plan’ (SFP). The OAs .
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angd te? SFP are analysed based on theik ™)

to use their respective experim
to identify the optimal process s¢

experiments. <\

2. Research Metho %9
Q

2.1. The Segmented Fraetional Plan

In the design of experiments, experiments
with  more than one replicate are
recommended. However, situations may arise
where due to a lack of resources, a minimal
number of experimental runs is sought to
improve the process (Montgomery, 2013; Wu
& Hamada, 2000). The SFP is proposed for
cases where a single replicate of the
experiment is preferred due to the minimal
availability of resources. The SFP uses a full
factorial experiment (23 or 2* full factorial
experiment) at the high and low factor

2) SQntthOl]fs tfactorts tf:]re mllxe(: W'tg settings to identify the most important factor
ﬂ:scree ac 0? ah ree tevtesti?] in the system and to also determine the
ef[e_xperlm:n frc oo;_es Ot reat the optimal process setting when curvature
continuous Tactors as discrete. resulting from the medium settings of the
’& factors is not«detected.
O O
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By adding a centre point run@ the full
factorial design, a test for curvature is
conducted using a statistical test and, a main
effects and centre point plot (m-c plot).
Curvature as referred to herein signifies that
the medium setting is the best setting of one
or more factors. The statistical test for
curvature uses centre point runs to check for
the possibility of a curvilinear relationship
between the factors being studied and the
response of interest (Montgomery, 2013). As
a curvilinear relationship may mean that the
medium setting of a factor produces a better
result than its high and low settings, the
statistical test is employed to test for
curvature. In a single replicate experiment,
the statistical test can be used by removing the
least significant interaction effect from the
response prediction model. This may
compromise the go@e‘ss of the statistical
test when the effeetNis not small enough
(Montgomery, ,ZGQQJ. Hence, it is used in
conjunction n m-c plot to improve the
detectionef¢urvature. Using both tests, if the
responsg e centre point is worse than the
n “résponse from the full
p iment, it
ikely. The m-c plot shows the p05|

eto
the mean response from the f ctorlal
experiment and the mean responsévef the high

and low setting of each factor. Across the 3-
level full factorial design space, if the mean
response at the high and low setting of a factor
or a combination of factors is worse than the
mean response of its medium setting, it may
be reflected in the response of the centre point
run as the response resulting from the main
effects of these factors at their medium setting
as well as their interactions with the medium
settings of other factors may better the
response associated with their optimum
settings (best average response between the
factor settings) across the full factorial design
at their high and low settings. In using the m-
¢ plot, when the centre point run produces a
better result than the response associated with
the optimal setting of at least one factor across
the 2% or 24 full factorial design space, it is
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is assumed curvature,
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assumed that curvature @ ge present. When
this is not the case, it is assumed curvature is
unlikely.

Figure 1 which is based on a 32 full factorial
experiment (Bhavsar et al., 2005) used to
investigate the influence of polymer
concentration  (factor A), amount of
nanoparticles (factor B) and stirring speed
(factor C) on the size of nanoparticles
produced (NS), is used to demonstrate how
the m-c plot is used. Figure 1a is an m-c plot
from the experiment and figure 1b is a main
effects plot from the 32 full factorial of the
same experiment. The low, medium and high
factor settings are represented by the numbers
-1, 0 and 1 respectively. This is the same for
all other experiments described in this paper.
For a minimal size of nanoparticles, the m-c
plot showed that the response of the centre
point run (1) was better than the response

associat\%mu the optimal setting of factor B
(16 q% “across the 23 full factorial design

&

N
K

Based on the interpretation of the n?:/

% “this may suggest the presen%{
vature. Comparing the m-c plot_ to

“main effects plot from the 33 f Lygja“forlal
experiment, it can be seen thaf Curvature
exists as the optimal setting a£stor B is its
medium setting.

If either the statistical @e m-c plot, or
both, suggest the possibility of curvature, the
medium setting of the factors should be
explored. If both tests suggest curvature is
unlikely, the full factorial experiment can be
analysed to identify the optimal process
setting. To identify the optimal process
setting when the tests for curvature suggest
curvature may be present, an experimental
run is conducted by changing the most
important factor to its medium setting while
keeping other factors at their best setting from
the full factorial experiment. Retaining the
setting of the most important factor that
produced the best response, a second 2-level
full factorial experiment of the less important
factors at their best setting from the first full
factorial experiment and their medium setting
is performed. The optimal factor setting
corresponds ;t&he factor settings that produce
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the best response across all @eriments important factors was a synergistic and
conducted. In explaining why the most anti-synergistic interaction are defined as
important factor was changed to its medium follows.

setting and why a full factorial of the less

24/

Mean of NS (um)

104

i 6 1 a1 6 1 1 & 1 Qg}\
Factor settings @
i

Figuce 1. (a) M-C plot for the NS experiment, ® represents the runs at the factorieil< s,

® represents’the centre point run
A =y %
&
0 A B C

Mean of NS (um)

10 1 1 0 1 1 0 1

Factor settings
Figure 1. (b) Main Effects plot for the NS experiment
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eraction
which provides an additional improvement to
the system response when main effects are
positively exploited compared to a model of
main effects only. On the other hand, an anti-
synergistic interaction worsens the system
response when main effects are positively
exploited compared to a model of main
effects only. Positive exploitation of main
effects mean that the main effects are set at
levels that improve the system response while
negative exploitation of main effects mean
that the main effects are set at levels that
worsen the system response (Frey & Jugulum
2006). The following example from a 23 full
factorial experiment investigating the effects
of temperature (factor A), initial pH of
solution (factor B) and the ionic strength of
dispersion (factor C) on the maximum
adsorption of an @Qnic dye (Brilliant
Yellow) onto sepi% Bingol et al., 2010) is
used to illustratéshew synergistic and anti-
synergistic@ tions work.

The r%'on equation based on the

maxim\w e adsorption (Qe) was:

§1.7458 —0.14334 — 0.3400B + Q/\

808C + 0.06754AB — 0.0450AC +
0.2117BC + 0.0125ABC wr (1)
Positively exploiting the main<e2ects, the
following statements hold:

a. For a main effects model only, Qe =
2.3099mg/g

b. For a model of main effects with
AB, AC and ABC synergistic
interactions, Qe = 2.4349mg/g. The
synergistic interaction improved the
response of the main effects model.

c. Foramodel of main effects with BC
anti-synergistic interaction, Qe =
2.0982mg/g. The anti-synergistic
interaction worsened the response of
the main effects model.

In using the SFP, the most important factor is
selected to be changed to its medium setting
instead of other factors due to the following
reasons: Firstly, by varying the setting of the

.\ th€ amount of boron adsorbed, the fall

>

factorial experiment, @e is a reduced
chance that the interaction effects which act
opposite to the direction of exploitation of its
main effect will overcome its main effect as
well as the interaction effects acting in the
direction of exploitation of its main effects
compared to when other factors are changed
first (Frey & Jugulum, 2006). This is
demonstrated using an experiment (Seki et
al., 2006) conducted to investigate the
influence of adsorbent type (factor A), pH of
solution (factor B) and temperature (factor C)
on the adsorption of boron from aqueous
solution (Y). The regression equation from
the designed experiment is as follows:

Y = 0.4840 + 0.07904 — 0.0206B —
0.0666C + 0.0071AB + 0.0421AC —
0.0161BC + 0.0146ABC (2)

From th@ession equation, it can be seen

that factor-A is the most important followed
Ct%?s C and B respectively.

o Q=
n the aim of the experiment is to inm
g

“statements hold: ,Qm““
a) The optimal process¢settings are
A=+, B=-and C=-.
b) Positively expl the main
effects of fa , B and C, the

main and interaCtion effect model
produced a response of Y=0.5995
mgL™*. This response corresponds to
the optimal process setting.

¢) Positively exploiting the effect of
factor B (B=-) while keeping factor
A at its less optimal setting from its
main effect analysis (A=-) and
keeping factor C at its optimal
setting from its main effect analysis
(C=-), the main and interaction
effects model produced a response
of Y =0.5107mgL ™.

d) Negatively exploiting the effect of
factor B (B=+) while keeping factors
A and C at the same settings from
the previous step (A=-, C=-), the
main and interaction effects model

most important factgrirst in a 2-level full prodyced a response of Y =
N X ~
o \(’:} {"“@ ¢ \</
Q/Q:o Q/Q”o Q:o
S "\:\}‘ \NQ/
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0.5167mgL™. The ma&fect of
factor B is not reflected as the
response has improved compared to
when factor B was positively
exploited. Even though the main
effect of factor B and the ABC
synergistic interaction had a larger
value than the AB, AC and BC anti-
synergistic  interactions at the
optimal process setting (A=+, B=-,
C=-), which is a representation of
the positive exploitation of all the
factors, at the process setting (A=-,
B=+, C=-), the interaction effects
which acted opposite to the direction
of exploitation of the main effect of
factor B (AC, BC, ABC) overcame
the main effect of factor B as well as
the interaction effects which acted in
the directio exploitation of the
main effect'gfifactor B (AB).
How yer}pﬁsitively exploiting the
eff f factor A across all
ations of factor settings of
%ors B and C improves the system

€)

“~

A ‘
<\ shown in table 1.

&

Table 1. Experimental data set

is negatively exploited. This<\|

B |c Boron adsorption | Boromadsorption
(mgLHatA=- |[(mgLHatA=+

- | - 10,5107 0.5995

+ | - |0.5167 0.5755

- | + ]0.3547 0.5535

+ | + ]0.2379 0.5235

The second reason the most important factor
was chosen to be changed first to its medium
setting compared to other factors was due to
the hierarchical ordering principle for
factorial effects which states that lower order
effects are more likely to be important than
higher order effects. In other words, main
effects are more likely to be important than
two factor interaction effects, two factor
interaction effects are more likely to be
important than three factor interaction effects,
etc. Focusing on the rgn effect of the most
)
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important factor as it is @uost likely to obey
the principle, this signifies that the main
effect of the most important factor is more
likely to be larger than any interaction effect
(Wu & Hamada, 2000). Thus, by changing
first, the most important factor in a process to
its medium setting, there is a reduced chance
that the interaction effects which act opposite
to the direction of exploitation of its main
effect will overcome its main effect as well as
the interaction effects acting in the direction
of exploitation of its main effects compared
to when other factors are changed first. When
the most important factor across the 3-level
full factorial experiment is different from that
obtained from the full factorial involving the
medium settings of the factors and their best
setting from the full factorial experiment at
their high and low settings, the likelihood of
the SFP i mifying the optimal process
setting i ed.

Respggg\s‘

C Wbe confirmed by using a full factorj

n as it explores all po

binations of factor settings. Whgfg e

St
““response compared to when factor ;%\ “optimal process settings obtaineng;o?ﬁ the
I

main effect analysis of a Q actorial
experiment do not correspon(?; he optimal
process settings across full factorial
design matrix, it is result of anti-
synergistic interactions présent in the system
(Frey & Jugulum, 2006). The first full
factorial employed by the SFP will identify
the optimal process setting resulting from
anti-synergistic interactions within the design
space of the full factorial experiment at the
high and low factor settings and the second
full factorial of the less important factors at
the best setting of the most important factor
will identify an optimal process setting which
results from anti-synergistic interactions at
the best setting of the most important factor
and the settings of the less important factors
being studied. For 3% experiments, the SFP
will require 9, 12 or 13 experimental runs, and
for 3* experiments, 17, 24 or 25 experimental
runs. This is dependent on the presence of
curvature in the system. A flow chart of the
SFP is shown(g figure 2 (See Appendix).
Y
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Q 2.2. Experimental data set <> compare the performan@é the OAs and the

SFP. The response investigated and the
Six full factorial experiments (Bocchini et al., factors studied are given in table 2.
2002; Bhavsar et al., 2006; Vitanov et al., Experiments 1, 2, and 3 are 3° full factorial
2010; Reddy & Rao, 2005; Erkan et al., 2013; experiments and experiments 4, 5 and 6 are 3*
Ozcelik et al., 2005) identified from literature full factorial experiments.
on designed experiments were used to

Table 2. Experimental data set

Experiment number Response, units Factors
Experiment 1 Xylanese production, U/ml Xylan (A), pH (B) and cultivation time (C)
Ex_perlment 2a Size of nanoparticles-in- Polymer concentration (A), amount of
(maximum response - h icles (B) and stirri q
value) microsphere, pm nanoparticles (B) and stirring speed (C)
|_E>§per|ment 2b Size of nanoparticles-in- Polymer concentration (A), amount of
(minimum response . h icl d stirri q
value) microsphere, pm nanoparticles (B) and stirring speed (C)
Coating bond strength of Rotational speed (A), traverse rate of the
Experiment 3 micro friction surfacing substrate (B) and feed rate of the mechtrode
process, N © \
. Surface roughness of Speed ( 3eed (B), radial rake angle (C)
Experiment 4 - \S medium carbon steel, um Atamd nose radius (D) { Y
" | Damage factor in the end \ ,»'\ uf
Exoer {';2 milling of glass fibre gﬁ%ber of flutes (A), cutting speed (B), s
P @‘a reinforced plastic depth of cut (C) and feed rate (D) <E"‘
composites, mm  \d' xQ/
‘\\, Surface roughness valués-ef ) ) g Y
/\Experlment 6a Inconel 718 super: CUH(':E% (sg;: Z‘:}é’?;dleegé%% g}(lal ¢ p)tﬁ‘(’)f
7 across the feed, p1m P 2“/
A
?\ . Surface roughnagswalues of Cutting speed (A), feed 1al depth of
Q-. Experiment 6b Inconel 7 eralloy cut (C) and radial o cut (D)
Q transverse to'the feed, um
A4

The response in experiment 2 was analysed The 3% and 3* full factorial experiments were
based on its minimum and maximum selected to represent the following:

response values as both responses were a) Interactions of vaying strength;
desirable, depending on the aim of the b) Cases where the optimal process
experiment. Also, two responses were setting was influenced by synergistic
analysed in experiment 6 namely: the surface and anti-synergistic interactions;
roughness values across the feed and the c) Experiments with and without
surface roughness values transverse to the curvature.

feed. Thus, eight responses from the six full The methodology used for classifying the

factorial experiments were analysed. The  strength of interactions in this paper was
responses from the experiments are coded  agopted from Frey et al (2003). It is based on
herein as follows; Experiment 1 (XA),  the contribution of the interactions to the total
Experiment 2a (NS) [maximum response  sym of squares of the system. The interaction
value], Experiment 2b (NS) [minimum  gyrength is calculated by dividing the sum of
response  value], Experiment 3 (ST),  squares due to interaction effects by the sum
Experiment 4 (SR), Experiment 5 (DF),  of squares due to the total factor effects (main
Experiment 6a (SAF), and Experiment 6b  anq interaction effects). Based on this ratio,

(STF). \~\» 6@.

S
%, 2) ~:>\<
& & G

AN AN AN
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fassified. To
facilitate the grouping of the experiments
used in this paper based on their interaction
strengths, three classes of interactions are
used. These are given in table 3 as follows:

Table 3. Classification of Interaction strength

Class of Strength of
Interaction interactions
Mild 0to0.1
Moderate 0.1t00.25
Strong Above 0.25
Experiments  with  various interaction

strengths were chosen to increase the chances
of interactions negatively affecting the ability
of the OAs and the SFP to identify the optimal
process setting and, to increase the chances of
interactions compromising the goodness of
the statistical test. T and 3* full factorial
experiments anal)(g'é?i in this study are each
representative »~0f.“the three classes of
interaction

In anal ?g( he experimental data set, it was
assumei at the errors associated with the «,

exp’e{mental runs were at their lowest. Th
is assumed the main and interaction effeets
0 e

from the analysis
l@m best

experimental data set represent
possible estimate.

The experiments were analysed using
Minitab statistical software. The 3% full
factorial experiments were analysed using the
9-run OA, the 18-run OA and the SFP while
the 3* full factorial experiments were
analysed using the 18-run OA, the 27-run OA
and the SFP. Main effects in the 9-run OA are
analysed by assuming that two factor
interactions and higher are negligible (Wu &
Hamada, 2000). Hence, the results of the 9-
run OA are based on a main effects analysis
as interaction effects cannot be analysed
using this array. Although the 18-run OA was
designed to be used to test for interactions
when the factor settings are continuous, the
results of the 18-run OA are based on main
effects analysis as the factor settings are
analysed in a discrete manner in this study.

A~
O

&
\%
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The results of the 27-rﬁ§$~ are based on a
main and two factor interaction effect
analysis. In the 27-run OA, main effects and
some two factor interaction effects are aliased
with three factor interaction effects and, some
two factor interaction effects are aliased with
other two factor interaction effects. The two
factor interaction effects can be estimated by
assuming that three factor interaction effects
and higher are negligible (Wu & Hamada,
2000). Based on this assumption, the main
effects and all two factor interaction effects
were analysed.

For 3* full factorial experiments the 18-run
OA was analysed instead of the 9-run OA as
the additional number of experimental runs in
the 18-run OA provides more experimental
data and as such will increase the chances of
correctly estimating the main effects.

3. R@ and Discussions
Ch
SQI,es“[ing for curvature using the SFP.

“g/testing for curvature using the SFP,,\ﬂggﬁ-

c plot and the statistical test fop{curvature
produced the same result in ex;ﬁﬁ;m nts 1, 4
and 5. In experiments 2a and o tests for
curvature were conduct the response
from the centre point r Was worse than the
mean response from “the full factorial
experiment at the high and low settings of the
factors. However, in experiments 2b, 3 and
6b, the advantage of combining the m-c plot
with the statistical test is observed. These
experiments are discussed as follows:

Experiment 2b (NS): In this experiment, the
statistical test for curvature generated a p-
value of 0.361 which implied that curvature
was unlikely. However, the m-c plot showed
that the response at the centre point was better
than the response associated with the optimal
setting of factor B (amount of nanoparticles)
across the 23 full factorial design space. As
this was the same experiment described in
figure 1, it can be seen from figure 1 that a
main effect analysis of the 3% full factorial
experiment confirmed the presence of
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curvature as the optimal settin factor B
(amount of nanoparticles) was its medium
setting. This shows the advantage of
combining the statistical test for curvature
with the m-c plot.

Experiment 3 (ST): The statistical test for
curvature generated a p-value of 0.214 which
implied that curvature was unlikely.
Checking for curvature with the m-c plot
(figure 3), it showed that the response at the
centre point was better than the response
associated with the optimal setting of all three

800

700

P
Mean of ST (N)

>

factors across the 23@ factorial design
space.

Hence, a suggestion for the experimenter to
explore the design space associated with the
medium settings of all the factors. A main
effect analysis of the 3% full factorial
experiment showed that the optimal setting of
factor A was its medium setting as the optimal
process setting was A = medium, B = low, C
= high. This again, shows the advantage of
combining the statistical test for curvature
with the m-c plot.

B C

L [
&
b

0 1 -1 0 1

Factor settings

Figure 3. M-C plot for ST experiment, ® represents the runs at the factorial points,
@ represents the centre point run

Experiment 6b (STF): The statistical test for
curvature generated a p-value of 0.106. This
indicated curvature was unlikely. On the
other hand, the m-c plot (figure 4) showed
that the response at the centre point was better
than the response associated with the optimal
setting of all four factors across the 24 full
factorial design space. Thus, indicating that
curvature may be present. A main effect
analysis of the 3* full factorial experiment
revealed that the optimal process setting
included the medium setting of the cutting

speed (factor A) and the axial depth of cut
(factor C) which signified the presence of
curvature. On this occasion, the m-c plot
proved to be useful as it was able to identify
the curvature in the system. Experiments 2, 3
and 6b demonstrate the advantage of
combining the statistical test for curvature
with the m-c plot when testing for curvature.
Even though the statistical test suggested
curvature was unlikely in these experiments,
the use of the m-c plot improved the chance
of identifying curvature in the system.
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Figure 4. M-C plot for STF experiment, ® represents the runs at the factorial points,
® represents the centre point run

3.2. Comparing the performance of the
OAs and SFP

Table 4 compares th ults of the OAs, the
SFP and the 3—Ie\(e; Il factorial design for
fivestigated, as well as the

all the experiments]
number %?Et&mental runs needed for the

experim plans. In table 4, L/B (larger-
the—bqgttg ignifies that a larger response

value Was desired and S/B (smaller-th
‘vgt ) signifies that a smaller response value

s desired.

33 full factorial experiments (ex@}%gnts 1,
2a, 2b and 3):

In these experiments, the 18-run OA
performed as well as or better than the 9-run
OA. In experiment 3, the 9-run OA produced
a result of 1026N and the 18-run OA
produced a result of 882N. From the point of
view of array efficiency, the 18-run OA
produced a better result as its result was the
same as that obtained from the main effect
analysis of the 3% full factorial experiment.
For the SFP, it performed as well as or better
than the 18-run OA with a reduced number of
experimental runs across all 32 full factorial
experiments.

3% full factorial experiments (experiments 4,
5, 6a and 6b):

In experiment 4 and 5, the 18-run OA
performed as well elxthe 27-run OA. In

“Sanalysis of the

experiment 6a, the main effect analysis of the
34 full factorial experiment produced a result
of 0.280pm and the best response across the
34 full facto%ﬁrl];design space was 0.245um. In
this experiment, the 18-run OA produced a
resuly~0£0.315um while the 27-run OA
pwggs‘d aresult of 0.245um. In this case, t v
t of 0.245um produced by the 27-ru
y chance as it was not obtained froy
interaction e/q;éfé‘.‘ In

experiment 6b, the best response/across the 34
full factorial design space w 480um. In
this experiment, the 18-r produced a
result of 0.520pum Whiﬁ%sponded to the
result obtained from a main effect analysis of
the 3 full factorial experiment. On the other
hand, the 27-run-OA produced a result of
1.083um which was worse than that of the 18-
run OA. For the SFP, with the exception of
experiment 6a, it performed as well as or
better than the 27-run OA with a reduced
number of experimental runs and; in
experiments 5 and 6a it performed better than
the 18-run OA with a reduced number of
experimental runs.

With the exception of experiment 6a, the SFP
performed as well as or better than the 9, 18
and 27-run OAs across all experiments (33
and 3* full factorial experiments). Compared
to the OAs, an advantage of performing a full
factorial experiment at the high and low factor
settings is the identification of the optimal
factor settiﬂg due to anti-synergistic
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interactions within this design ce. For
instance, in the damage factor experiment
(experiment 5), using 17 experimental runs,
the SFP identified the optimal process setting
resulting from anti-synergistic interactions
which produced a result of 1.1383um as
curvature was not detected in the system. On
the other hand, both the 18 and 27-run OA
produced the same result of 1.1401um with
18 and 27 experimental runs respectively.
Because the OAs are not full factorial
designs, the experimenter cannot identify for
certain responses due to anti-synergistic

>

interactions. Also, the @action tests of the
27-run OA may or may not identify them.
Cases may exist when the optimal process
setting produced by the main and interaction
effect analysis of the OAs is present in their
design matrix. In such a case, a comparison
can be made between the optimal process
settings identified from the main and
interaction effect analysis to the optimal
process setting across the OA design matrix.
The better response can then be selected
based on the comparison.

Table 4. Summary of the results from the OAs, the SFP and the 3-level full factorial design

{o@

A second advantage of the SFP over the 18
and 27-run OA is that in minimising the
chances of exploring insignificant design
spaces by means of the tests for curvature, the
process performance can be improved by
identifying anti-synergistic interactions with
nine less experimental runs than the 18-run
OA (for 32 full factorial experiments), one

less experimental run than the 18-run OA (for
3% full factorial experiments) and ten less
experimental runs than the 27-run OA (for 3*
full factorial experiments). Furthermore, the
SFP will require less experimental runs than
running two full factorial experiments at the
high and low factor settings and, the medium
and the best settings from the full factorial at

Exp. 1 (XA). Exp. plans 9-run OA 18-run OA SFP Full factorial
Response (units in U/ml) (L/B) 15.81 22.4 22.45 22.45
Run size 9 18 13 27
Exp. 2a (NS). Exp. plans 9-run OA 18-run OA SFP Full factorial
Response (units in U/my(L/B) 27 27 <\ 3160 31.60 AN
Run size O 9 18 (N} 9 27 { N}
Exp. 2b (NS). Expuplans 9-run OA 18-run OA” SFP Full factorial |~ N\
Response (unitsin U/ml) (L/B) 751 s - 6.80 680 o
Runsizg” " 9 AT 13 21 /
Exp..3 (SH.Exp. plans 9-run OA [\ "%6run OA SFP Full factorial”
Response (units in U/ml) (L/B) 1026 £ | 882 1249 A249”
(Run'size YA 18 13 Vol
bEXp. 4 (SR). Exp. plans 18-rﬁ1)bA 27-run OA SFP WI factorial
Response (units in U/ml) (L/B) @»&50 0.460 0.460 03 0.460
Run size {18 27 Y 81
Exp. 5 (DF). Exp. plans 18-run OA 27-run OA SFP ¥ Full factorial
Response (units in U/ml) (L/B) 1.1401 1.1401 1.1383 1.1383
Run size 18 27 17 81
Exp. 6a (SAF). Exp. plans 18-run OA 27-run OA SFP Full factorial
Response (units in U/ml) (L/B) 0.315 0.245 0.270 0.245
Run size 18 27 17 81
Exp. 6b (STF). Exp. plans 18-run OA 27-run OA SFP Full factorial
Response (units in U/ml) (L/B) 0.520 1.083 0.520 0.480
Run size 18 27 25 81
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cto
3-level full factorial experiment
performance of the SFP may be affecte:

experiments, this strategy requires fewer
experimental runs than the 18-run OA as it
uses 15. Comparing the performance of this
strategy to the OAs and the SFP (for 3°
experiments) showed it produced the same
result as the SFP.

In using the SFP, the most important factor
across the first 2-level full factorial
experiment and the full factorial involving the
medium settings of the factors and their best
setting from the first full factorial experiment
may not be the same. In such a case, changing
the most important factor to its medium
setting at the best settings of other factors
from the first full factorial experiment may
produce sub optimal results as the response at
the medium setting of the most important
factor may be affected by anti-synergistic
interactions. To mia@ise this, the factor
settings should be:é\ nly spaced out when
possible. Thi cai*Teduce the chances of
choosing faﬁgi ttings that do not reflect the
true imp% e of the factors. Furthermore, if

the most

settings varies from that obtained

the choice of the most important@ .

A disadvantage of the SFP compared to the
OAs is that the optimal factor setting due to
main effects in the full factorial experiment at
the high and low factor settings may differ
from those obtained from a 3-level full
factorial experiment due to interactions. This

References:

This disadvantage also applies to the full
factorial experiments involving the high and
low factor settings and, the medium and the
best settings from the full factorial at the high
and low factor setting. In such situations,
when curvature is present and anti-synergistic
interactions do not determine the optimal
process setting, the OAs may outperform the
SFP.

4. Conclusion

In summary, the SFP provides an option for
economic experimentation without
neglecting the influence of interactions on the
system response. Although the SFP has its
disadvantages, the SFP can be useful in
situations where resources are scarce and
process opti tion with minimal amount of
resources iS\the primary objective.

7
Futu search will focus on identifying
W. etter quantify the performance

of
| X . One way to do this is by charactexﬁ'gQ
portant factor obtained from the . \ th¢ relative probabilities of interactions Whith

fUU@C\mW experiment at the high and |0}K “act opposite to and in the directio%)f\“main
rom
e

and negatively exploited. is* way, the
performance of the SFP@&» be quantified
when the most importal t factor in the 3-level
full factorial experiment and the full factorial
involving the medium settings of the factors
and their best setting from the first full
factorial experiment are the same or
otherwise.
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Perform a 2-level full factorial
experiment using the high and low
settings of the factors

v

Obtain a centre
point run

v

Use a statistical test for curvature and an m-c plot to
determine the significance and direction of the

curvature é
O >

Curvature
present

/

determine the important factor effects and
identify the optimal process setting

% Analyse the full factorial experiment to
—

~

Q& v Q« Q&
Voo

; Identify the most important factor from the full factorial §

0 experiment and vary it between its medium setting and its best 0Q~

setting from the full factorial experiment while keeping other
factors at their best settings from the full factorial experiment

v

Keeping the most important factor at the setting that produced the best response, run a
second 2-level full factorial experiment of the least important factors at their medium
settings and their best settings from the first full factorial experiment

v

Identify the best response obtained across all experiments conducted and use
the factor settings that produced it as the optimal process setting

End

Figure 2. A flow chart of the segmented fractional plan
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