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AN EXPERIMENTAL STRATEGY FOR 

FRACTIONATING 33 AND  

34 FACTORIAL EXPERIMENTS 

 
Abstract: In the design of statistical experiments, situations 

may arise when resource constraints hinder the use of 

factorial designs for process improvement.  This paper 

explores how 9, 18 and 27-run orthogonal arrays compare 

against each other and against a proposed  experimental plan 

referred to as a ‘Segmented Fractional Plan’  when used to 

fractionate 33 and 34 factorial experiments. Based on the 

analysis of 8 responses from 6 factorial experiments, it was 

observed that to identify the process setting that produces the 

desired product quality, with a reduced number of 

experimental runs, the segmented fractional plan can 

perform as well or better than some orthogonal arrays thus, 

providing an option for fractionating 33 and 34 factorial 

experiments. 

Keywords: Three-level fractional factorial designs, three-

level orthogonal arrays, design of experiments, process 

improvement, quality improvement. 

 

 

 

1. Introduction  
 

Process quality improvement has been the 

focus of many industries due to the 

competitive advantage a process with high 

quality can provide (Montgomery & 

Woodwall, 2008). Experimentation plays a 

major role in improving the quality of 

industrial processes. Engineers engage in 

experimentation for various reasons. These 

include (Dean et al., 2017; Rodrigues & 

Lemma, 2015): 

• To determine which factors have the 

most influence on the process 

output; 

• To determine the settings of the 

influential factors that optimise the 

process output; 

• To determine the settings of the 

influential factors that minimises the 

variability in the process output;  

• To determine the settings of the 

influential factors that minimise the 

effect of uncontrollable factors on 

the process output. 

In improving the quality of a process when 

several factors are to be investigated, factorial 

experiments are recommended over other 

experimental strategies as they can be used to 

estimate all factor effects (Montgomery, 

2013). However, improving the performance 

of a process using factorial designs may not 

be possible when resources are limited due to 

the number of experimental runs needed to 

conduct some factorial designs 

(Montgomery, 2013; Wu & Hamada, 2000). 

Orthogonal arrays (OAs) and fractional 

factorial designs (also OAs) are commonly 

used to fractionate factorial designs 

(Montgomery, 2013; Wu & Hamada, 2000). 

A good OA design can not only reduce run 

size and cost, but also provide precise 
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estimation of factorial effects of interest 

(Tang & Xu, 2014). See (Tutar et al., 2014; 

Vankanti & Ganta, 2014) for examples on the 

use of OAs for process improvement. 

In addition, OAs are used for screening 

experiments in which the objective is to 

identify the most important factor effects 

from a list of many potential ones (Nguyen & 

Pham, 2016; Xu et al., 2004). Based on the 

knowledge gained from the screening 

experiment, the process can be optimised (Xu 

et al., 2014). See (Tagliaferri et al., 2013) for 

an example on the use of OAs for factor effect 

screening. 

The focus of this paper is on the fractionation 

of 3-level factorial designs for 3 and 4 factors 

(33 and 34 factorial designs). Although 3-level 

factorial designs are not recommended when 

less expensive second order designs can be 

used to investigate a process, 3-level factorial 

designs are useful in situations where the 

process settings are discrete in form 

(Montgomery, 2013; Wu & Hamada, 2000). 

In addition, practical situations may arise 

where discrete and continuous factors are 

mixed at three levels. There is no standard 

approach to analysing experiments in such 

situations with Box-Behnken designs 

requiring the factors to be continuous 

(NIST/SEMATECH e-handbook of statistical 

methods 2013) and, more recent 3-level 

designs (Definitive Screening Designs) 

designed to accommodate discrete factors at 

2-levels (Jones & Nachtsheim, 2013). 

When the aim of the experiment is to identify 

factor settings that improve the quality of the 

process output, one way to analyse such 

experiments is to treat the continuous factors 

as discrete.  This research focuses on cases 

where: 

1) the goal of the experiment is to 

identify factor settings that improve 

the quality of the process output, 

2) continuous factors are mixed with 

discrete factors at three levels and 

the experimenter chooses to treat the 

continuous factors as discrete. 

 

A 9-run fractional factorial design is used to 

fractionate a 33 factorial design while 9 and 

27-run fractional factorial designs are used to 

fractionate a 34 factorial design 

(Montgomery, 2013; Wu & Hamada, 2000). 

Xu et al (2004) developed 3-level 18-run OAs 

for screening important factors from a large 

number of potential factors and also detecting 

interactions among a subset of active factors 

when 3 to 7 factors are to be studied. To 

distinguish factorial designs from fractional 

factorial designs, factorial designs are 

referred to as full factorial designs and the 9 

and 27-run fractional factorial designs are 

referred to as OAs to simplify discussions on 

these designs and the 18-run OA. This paper 

analyses eight responses from three 33 full 

factorial experiments and three 34 full 

factorial experiments using the 9-run OA, the 

18-run OAs of Xu et al., the 27-run OA and a 

proposed experimental plan referred to as a 

‘Segmented Fractional Plan’ (SFP). The OAs 

and the SFP are analysed based on their 

ability to use their respective experimental 

runs to identify the optimal process setting 

obtained from the 33 and 34 full factorial 

experiments.  

 

2. Research Methodology 
 

2.1. The Segmented Fractional Plan  

 

In the design of experiments, experiments 

with more than one replicate are 

recommended. However, situations may arise 

where due to a lack of resources, a minimal 

number of experimental runs is sought to 

improve the process (Montgomery, 2013; Wu 

& Hamada, 2000). The SFP is proposed for 

cases where a single replicate of the 

experiment is preferred due to the minimal 

availability of resources. The SFP uses a full 

factorial experiment (23 or 24 full factorial 

experiment) at the high and low factor 

settings to identify the most important factor 

in the system and to also determine the 

optimal process setting when curvature 

resulting from the medium settings of the 

factors is not detected.  
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By adding a centre point run to the full 

factorial design, a test for curvature is 

conducted using a statistical test and, a main 

effects and centre point plot (m-c plot). 

Curvature as referred to herein signifies that 

the medium setting is the best setting of one 

or more factors. The statistical test for 

curvature uses centre point runs to check for 

the possibility of a curvilinear relationship 

between the factors being studied and the 

response of interest (Montgomery, 2013). As 

a curvilinear relationship may mean that the 

medium setting of a factor produces a better 

result than its high and low settings, the 

statistical test is employed to test for 

curvature. In a single replicate experiment, 

the statistical test can be used by removing the 

least significant interaction effect from the 

response prediction model. This may 

compromise the goodness of the statistical 

test when the effect is not small enough 

(Montgomery, 2013). Hence, it is used in 

conjunction with an m-c plot to improve the 

detection of curvature. Using both tests, if the 

response at the centre point is worse than the 

mean response from the full factorial 

experiment, it is assumed curvature is 

unlikely. The m-c plot shows the position of 

the response of the centre point run relative to 

the mean response from the full factorial 

experiment and the mean response of the high 

and low setting of each factor. Across the 3-

level full factorial design space, if the mean 

response at the high and low setting of a factor 

or a combination of factors is worse than the 

mean response of its medium setting, it may 

be reflected in the response of the centre point 

run as the response resulting from the main 

effects of these factors at their medium setting 

as well as their interactions with the medium 

settings of other factors may better the 

response associated with their optimum 

settings (best average response between the 

factor settings)  across the full factorial design 

at their  high and low settings. In using the m-

c plot, when the centre point run produces a 

better result than the response associated with 

the optimal setting of at least one factor across 

the 23 or 24 full factorial design space, it is 

assumed that curvature may be present. When 

this is not the case, it is assumed curvature is 

unlikely.  

Figure 1 which is based on a 33 full factorial 

experiment (Bhavsar et al., 2005) used to 

investigate the influence of polymer 

concentration (factor A), amount of 

nanoparticles (factor B) and stirring speed 

(factor C) on the size of nanoparticles 

produced (NS), is used to demonstrate how 

the m-c plot is used. Figure 1a is an m-c plot 

from the experiment and figure 1b is a main 

effects plot from the 33 full factorial of the 

same experiment. The low, medium and high 

factor settings are represented by the numbers 

-1, 0 and 1 respectively. This is the same for 

all other experiments described in this paper. 

For a minimal size of nanoparticles, the m-c 

plot showed that the response of the centre 

point run (15µm) was better than the response 

associated with the optimal setting of factor B 

(16.65µm) across the 23 full factorial design 

space. Based on the interpretation of the m-c 

plot, this may suggest the presence of 

curvature. Comparing the m-c plot to the 

main effects plot from the 33 full factorial 

experiment, it can be seen that curvature 

exists as the optimal setting of factor B is its 

medium setting.  

If either the statistical test or the m-c plot, or 

both, suggest the possibility of curvature, the 

medium setting of the factors should be 

explored. If both tests suggest curvature is 

unlikely, the full factorial experiment can be 

analysed to identify the optimal process 

setting.  To identify the optimal process 

setting when the tests for curvature suggest 

curvature may be present, an experimental 

run is conducted by changing the most 

important factor to its medium setting while 

keeping other factors at their best setting from 

the full factorial experiment. Retaining the 

setting of the most important factor that 

produced the best response, a second 2-level 

full factorial experiment of the less important 

factors at their best setting from the first full 

factorial experiment and their medium setting 

is performed. The optimal factor setting 

corresponds to the factor settings that produce 
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the best response across all experiments 

conducted. In explaining why the most 

important factor was changed to its medium 

setting and why a full factorial of the less 

important factors was used, a synergistic and 

anti-synergistic interaction are defined as 

follows. 

 

 
Figure 1. (a) M-C plot for the NS experiment,  represents the runs at the factorial points, 

 represents the centre point run 

 

 
Figure 1. (b) Main Effects plot for the NS experiment 



 

509 

A synergistic interaction is an interaction 

which provides an additional improvement to 

the system response when main effects are 

positively exploited compared to a model of 

main effects only. On the other hand, an anti-

synergistic interaction worsens the system 

response when main effects are positively 

exploited compared to a model of main 

effects only. Positive exploitation of main 

effects mean that the main effects are set at 

levels that improve the system response while 

negative exploitation of main effects mean 

that the main effects are set at levels that 

worsen the system response (Frey & Jugulum 

2006). The following example from a 23 full 

factorial experiment investigating the effects 

of temperature (factor A), initial pH of 

solution  (factor B) and the ionic strength of 

dispersion (factor C) on the maximum 

adsorption of an anionic dye (Brilliant 

Yellow) onto sepiolite (Bingol et al., 2010) is 

used to illustrate how synergistic and anti-

synergistic interactions work. 

The regression equation based on the 

maximum dye adsorption (Qe) was: 

 

𝑄𝑒 = 1.7458 − 0.1433𝐴 − 0.3400𝐵 +
0.0808𝐶 + 0.0675𝐴𝐵 − 0.0450𝐴𝐶 +
0.2117𝐵𝐶 + 0.0125𝐴𝐵𝐶                         (1) 
 

Positively exploiting the main effects, the 

following statements hold:  

a. For a main effects model only, Qe = 

2.3099mg/g 

b. For a model of main effects with 

AB, AC and ABC synergistic 

interactions, Qe = 2.4349mg/g. The 

synergistic interaction improved the 

response of the main effects model. 

c. For a model of main effects with BC 

anti-synergistic interaction, Qe = 

2.0982mg/g. The anti-synergistic 

interaction worsened the response of 

the main effects model. 

In using the SFP, the most important factor is 

selected to be changed to its medium setting 

instead of other factors due to the following 

reasons: Firstly, by varying the setting of the 

most important factor first in a 2-level full 

factorial experiment, there is a reduced 

chance that the interaction effects which act 

opposite to the direction of exploitation of its 

main effect will overcome its main effect as 

well as the interaction effects acting in the 

direction of exploitation of its main effects 

compared to when other factors are changed 

first (Frey & Jugulum, 2006). This is 

demonstrated using an experiment (Seki et 

al., 2006) conducted to investigate the 

influence of adsorbent type (factor A), pH of 

solution (factor B) and temperature (factor C) 

on the adsorption of boron from aqueous 

solution (Y). The regression equation from 

the designed experiment is as follows: 

 

𝑌 = 0.4840 + 0.0790𝐴 − 0.0206𝐵 −
0.0666𝐶 + 0.0071𝐴𝐵 + 0.0421𝐴𝐶 −
0.0161𝐵𝐶 + 0.0146𝐴𝐵𝐶                          (2) 

 

From the regression equation, it can be seen 

that factor A is the most important followed 

by factors C and B respectively. 

When the aim of the experiment is to increase 

the amount of boron adsorbed, the following 

statements hold:  

a) The optimal process settings are 

A=+, B=- and C=-. 

b) Positively exploiting the main 

effects of factor A, B and C, the 

main and interaction effect model 

produced a response of Y=0.5995 

mgL-1. This response corresponds to 

the optimal process setting. 

c) Positively exploiting the effect of 

factor B (B=-) while keeping factor 

A at its less optimal setting from its 

main effect analysis (A=-) and 

keeping factor C at its optimal 

setting from its main effect analysis 

(C=-), the main and interaction 

effects model produced a response 

of Y = 0.5107mgL-1.  

d) Negatively exploiting the effect of 

factor B (B=+) while keeping factors 

A and C at the same settings from 

the previous step (A=-, C=-), the 

main and interaction effects model 

produced a response of Y = 
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0.5167mgL-1. The main effect of 

factor B is not reflected as the 

response has improved compared to 

when factor B was positively 

exploited. Even though the main 

effect of factor B and the ABC 

synergistic interaction had a larger 

value than the AB, AC and BC anti-

synergistic interactions at the 

optimal process setting (A=+, B=-, 

C=-), which is a representation of 

the positive exploitation of all the 

factors, at the process setting (A=-, 

B=+, C=-), the interaction effects 

which acted opposite to the direction 

of exploitation of the main effect of 

factor B (AC, BC, ABC) overcame 

the main effect of factor B as well as 

the interaction effects which acted in 

the direction of exploitation of the 

main effect of factor B (AB).  

e) However, positively exploiting the 

effect of factor A across all 

combinations of factor settings of 

factors B and C improves the system 

response compared to when factor A 

is negatively exploited. This is 

shown in table 1. 

 

Table 1. Experimental data set 

B C 
Boron adsorption 

(mgL-1) at A = - 

Boron adsorption 

(mgL-1) at A = + 

- - 0.5107 0.5995 

+ - 0.5167 0.5755 

- + 0.3547 0.5535 

+ + 0.2379 0.5235 

 

The second reason the most important factor 

was chosen to be changed first to its medium 

setting compared to other factors was due to 

the hierarchical ordering principle for 

factorial effects  which states that lower order 

effects are more likely to be important than 

higher order effects. In other words, main 

effects are more likely to be important than 

two factor interaction effects, two factor 

interaction effects are more likely to be 

important than three factor interaction effects, 

etc. Focusing on the main effect of the most 

important factor as it is the most likely to obey 

the principle, this signifies that the main 

effect of the most important factor is more 

likely to be larger than any interaction effect 

(Wu & Hamada, 2000). Thus, by changing 

first, the most important factor in a process to 

its medium setting, there is a reduced chance 

that the interaction effects which act opposite 

to the direction of exploitation of its main 

effect will overcome its main effect as well as 

the interaction effects acting in the direction 

of exploitation of its main effects compared 

to when other factors are changed first. When 

the most important factor across the 3-level 

full factorial experiment is different from that 

obtained from the full factorial involving the 

medium settings of the factors and their best 

setting from the full factorial experiment at 

their high and low settings, the likelihood of 

the SFP identifying the optimal process 

setting is reduced.  

Responses due to anti-synergistic interactions 

can only be confirmed by using a full factorial 

design as it explores all possible 

combinations of factor settings. Where the 

optimal process settings obtained from the 

main effect analysis of a full factorial 

experiment do not correspond to the optimal 

process settings across the full factorial 

design matrix, it is as a result of anti-

synergistic interactions present in the system 

(Frey & Jugulum, 2006). The first full 

factorial employed by the SFP will identify 

the optimal process setting resulting from 

anti-synergistic interactions within the design 

space of the full factorial experiment at the 

high and low factor settings and the second 

full factorial of the less important factors at 

the best setting of the most important factor 

will identify an optimal process setting which 

results from anti-synergistic interactions at 

the best setting of the most important factor 

and the settings of the less important factors 

being studied. For 33 experiments, the SFP 

will require 9, 12 or 13 experimental runs, and 

for 34 experiments, 17, 24 or 25 experimental 

runs. This is dependent on the presence of 

curvature in the system. A flow chart of the 

SFP is shown in figure 2 (See Appendix). 
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2.2. Experimental data set 

 

Six full factorial experiments (Bocchini et al., 

2002; Bhavsar et al., 2006; Vitanov et al., 

2010; Reddy & Rao, 2005; Erkan et al., 2013; 

Ozcelik et al., 2005) identified from literature 

on designed experiments were used to 

compare the performance of the OAs and the 

SFP. The response investigated and the 

factors studied are given in table 2. 

Experiments 1, 2, and 3 are 33 full factorial 

experiments and experiments 4, 5 and 6 are 34 

full factorial experiments. 

 

Table 2. Experimental data set 

Experiment number Response, units Factors 

Experiment 1 Xylanese production, U/ml Xylan (A), pH (B) and cultivation time (C) 

Experiment 2a 

(maximum response 

value) 

Size of nanoparticles-in-

microsphere, µm 

Polymer concentration (A), amount of 

nanoparticles (B) and stirring speed (C) 

Experiment 2b 

(minimum response 

value) 

Size of nanoparticles-in-

microsphere, µm 

Polymer concentration (A), amount of 

nanoparticles (B) and stirring speed (C) 

Experiment 3 

Coating bond strength of 

micro friction surfacing 

process, N 

Rotational speed (A), traverse rate of the 

substrate (B) and feed rate of the mechtrode 

(C) 

Experiment 4 
Surface roughness of 

medium carbon steel, µm 

Speed (A), feed (B), radial rake angle (C) 

and nose radius (D) 

Experiment 5 

Damage factor in the end 

milling of glass fibre 

reinforced plastic 

composites, mm 

Number of flutes (A), cutting speed (B), 

depth of cut (C) and feed rate (D) 

Experiment 6a 

Surface roughness values of 

Inconel 718 superalloy 

across the feed, µm 

Cutting speed (A), feed (B), axial depth of 

cut (C) and radial depth of cut (D) 

Experiment 6b 

Surface roughness values of 

Inconel 718 superalloy 

transverse to the feed, µm 

Cutting speed (A), feed (B), axial depth of 

cut (C) and radial depth of cut (D) 

 

The response in experiment 2 was analysed 

based on its minimum and maximum 

response values as both responses were 

desirable, depending on the aim of the 

experiment. Also, two responses were 

analysed in experiment 6 namely: the surface 

roughness values across the feed and the 

surface roughness values transverse to the 

feed. Thus, eight responses from the six full 

factorial experiments were analysed. The 

responses from the experiments are coded 

herein as follows; Experiment 1 (XA), 

Experiment 2a (NS) [maximum response 

value], Experiment 2b (NS) [minimum 

response value], Experiment 3 (ST), 

Experiment 4 (SR), Experiment 5 (DF), 

Experiment 6a (SAF), and Experiment 6b 

(STF).  

The 33 and 34 full factorial experiments were 

selected to represent the following:  

a) Interactions of vaying strength; 

b) Cases where the optimal process 

setting was influenced by synergistic 

and anti-synergistic interactions; 

c) Experiments with and without 

curvature. 

The methodology used for classifying the 

strength of interactions in this paper was 

adopted from Frey et al (2003). It is based on 

the contribution of the interactions to the total 

sum of squares of the system. The interaction 

strength is calculated by dividing the sum of 

squares due to interaction effects by the sum 

of squares due to the total factor effects (main 

and interaction effects). Based on this ratio, 
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the interaction strengths are classified. To 

facilitate the grouping of the experiments 

used in this paper based on their interaction 

strengths, three classes of interactions are 

used. These are given in table 3 as follows: 

 

Table 3. Classification of Interaction strength 
Class of 

Interaction 

Strength of 

interactions 

Mild 0 to 0.1 

Moderate 0.1 to 0.25 

Strong Above 0.25 

 

Experiments with various interaction 

strengths were chosen to increase the chances 

of interactions negatively affecting the ability 

of the OAs and the SFP to identify the optimal 

process setting and, to increase the chances of 

interactions compromising the goodness of 

the statistical test. The 33 and 34 full factorial 

experiments analysed in this study are each 

representative of the three classes of 

interactions. 

In analysing the experimental data set, it was 

assumed that the errors associated with the 

experimental runs were at their lowest. Thus, 

it is assumed the main and interaction effects 

obtained from the analysis of the 

experimental data set represent their best 

possible estimate.  

The experiments were analysed using 

Minitab statistical software. The 33 full 

factorial experiments were analysed using the 

9-run OA, the 18-run OA and the SFP while 

the 34 full factorial experiments were 

analysed using the 18-run OA, the 27-run OA 

and the SFP. Main effects in the 9-run OA are 

analysed by assuming that two factor 

interactions and higher are negligible (Wu & 

Hamada, 2000). Hence, the results of the 9-

run OA are based on a main effects analysis 

as interaction effects cannot be analysed 

using this array. Although the 18-run OA was 

designed to be used to test for interactions 

when the factor settings are continuous, the 

results of the 18-run OA are based on main 

effects analysis as the factor settings are 

analysed in a discrete manner in this study. 

The results of the 27-run OA are based on a 

main and two factor interaction effect 

analysis. In the 27-run OA, main effects and 

some two factor interaction effects are aliased 

with three factor interaction effects and, some 

two factor interaction effects are aliased with 

other two factor interaction effects. The two 

factor interaction effects can be estimated by 

assuming that three factor interaction effects 

and higher are negligible (Wu & Hamada, 

2000). Based on this assumption, the main 

effects and all two factor interaction effects 

were analysed. 

For 34 full factorial experiments the 18-run 

OA was analysed instead of the 9-run OA as 

the additional number of experimental runs in 

the 18-run OA provides more experimental 

data and as such will increase the chances of 

correctly estimating the main effects.  

 

3. Results and Discussions 
 

3.1. Testing for curvature using the SFP 

 

In testing for curvature using the SFP, the m-

c plot and the statistical test for curvature 

produced the same result in experiments 1, 4 

and 5. In experiments 2a and 6a, no tests for 

curvature were conducted as the response 

from the centre point run was worse than the 

mean response from the full factorial 

experiment at the high and low settings of the 

factors. However, in experiments 2b, 3 and 

6b, the advantage of combining the m-c plot 

with the statistical test is observed. These 

experiments are discussed as follows: 

Experiment 2b (NS): In this experiment, the 

statistical test for curvature generated a p-

value of 0.361 which implied that curvature 

was unlikely. However, the m-c plot showed 

that the response at the centre point was better 

than the response associated with the optimal 

setting of factor B (amount of nanoparticles) 

across the 23 full factorial design space. As 

this was the same experiment described in 

figure 1, it can be seen from figure 1 that a 

main effect analysis of the 33 full factorial 

experiment confirmed the presence of 
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curvature as the optimal setting of factor B 

(amount of nanoparticles) was its medium 

setting. This shows the advantage of 

combining the statistical test for curvature 

with the m-c plot.  

Experiment 3 (ST): The statistical test for 

curvature generated a p-value of 0.214 which 

implied that curvature was unlikely. 

Checking for curvature with the m-c plot 

(figure 3), it showed that the response at the 

centre point was better than the response 

associated with the optimal setting of all three 

factors across the 23 full factorial design 

space.  

Hence, a suggestion for the experimenter to 

explore the design space associated with the 

medium settings of all the factors. A main 

effect analysis of the 33 full factorial 

experiment showed that the optimal setting of 

factor A was its medium setting as the optimal 

process setting was A = medium, B = low, C 

= high. This again, shows the advantage of 

combining the statistical test for curvature 

with the m-c plot. 

 

 
Figure 3. M-C plot for ST experiment,  represents the runs at the factorial points, 

 represents the centre point run 

Experiment 6b (STF): The statistical test for 

curvature generated a p-value of 0.106. This 

indicated curvature was unlikely. On the 

other hand, the m-c plot (figure 4) showed 

that the response at the centre point was better 

than the response associated with the optimal 

setting of all four factors across the 24 full 

factorial design space. Thus, indicating that 

curvature may be present. A main effect 

analysis of the 34 full factorial experiment 

revealed that the optimal process setting 

included the medium setting of the cutting 

speed (factor A) and the axial depth of cut 

(factor C) which signified the presence of 

curvature. On this occasion, the m-c plot 

proved to be useful as it was able to identify 

the curvature in the system. Experiments 2, 3 

and 6b demonstrate the advantage of 

combining the statistical test for curvature 

with the m-c plot when testing for curvature. 

Even though the statistical test suggested 

curvature was unlikely in these experiments, 

the use of the m-c plot improved the chance 

of identifying curvature in the system. 
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Figure 4. M-C plot for STF experiment,  represents the runs at the factorial points, 

 represents the centre point run 

 

3.2. Comparing the performance of the 

OAs and SFP 

 

Table 4 compares the results of the OAs, the 

SFP and the 3-level full factorial design for 

all the experiments investigated, as well as the 

number of experimental runs needed for the 

experimental plans. In table 4, L/B (larger-

the-better) signifies that a larger response 

value was desired and S/B (smaller-the-

better) signifies that a smaller response value 

was desired.  

 

33 full factorial experiments (experiments 1, 

2a, 2b and 3):  

In these experiments, the 18-run OA 

performed as well as or better than the 9-run 

OA. In experiment 3, the 9-run OA produced 

a result of 1026N and the 18-run OA 

produced a result of 882N. From the point of 

view of array efficiency, the 18-run OA 

produced a better result as its result was the 

same as that obtained from the main effect 

analysis of the 33 full factorial experiment. 

For the SFP, it performed as well as or better 

than the 18-run OA with a reduced number of 

experimental runs across all 33 full factorial 

experiments.  

 

34 full factorial experiments (experiments 4, 

5, 6a and 6b):  

In experiment 4 and 5, the 18-run OA 

performed as well as the 27-run OA. In 

experiment 6a, the main effect analysis of the 

34 full factorial experiment produced a result 

of 0.280µm and the best response across the 

34 full factorial design space was 0.245µm. In 

this experiment, the 18-run OA produced a 

result of 0.315µm while the 27-run OA 

produced a result of 0.245µm. In this case, the 

result of 0.245µm produced by the 27-run OA 

is by chance as it was not obtained from an 

analysis of the interaction effects. In 

experiment 6b, the best response across the 34 

full factorial design space was 0.480µm. In 

this experiment, the 18-run OA produced a 

result of 0.520µm which corresponded to the 

result obtained from a main effect analysis of 

the 34 full factorial experiment. On the other 

hand, the 27-run-OA produced a result of 

1.083µm which was worse than that of the 18-

run OA. For the SFP, with the exception of 

experiment 6a, it performed as well as or 

better than the 27-run OA with a reduced 

number of experimental runs and; in 

experiments 5 and 6a it performed better than 

the 18-run OA with a reduced number of 

experimental runs. 

With the exception of experiment 6a, the SFP 

performed as well as or better than the 9, 18 

and 27-run OAs across all experiments (33 

and 34 full factorial experiments). Compared 

to the OAs, an advantage of performing a full 

factorial experiment at the high and low factor 

settings is the identification of the optimal 

factor setting due to anti-synergistic 
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interactions within this design space. For 

instance, in the damage factor experiment 

(experiment 5), using 17 experimental runs, 

the SFP identified the optimal process setting 

resulting from anti-synergistic interactions 

which produced a result of 1.1383µm as 

curvature was not detected in the system. On 

the other hand, both the 18 and 27-run OA 

produced the same result of 1.1401µm with 

18 and 27 experimental runs respectively. 

Because the OAs are not full factorial 

designs, the experimenter cannot identify for 

certain responses due to anti-synergistic 

interactions. Also, the interaction tests of the 

27-run OA may or may not identify them. 

Cases may exist when the optimal process 

setting produced by the main and interaction 

effect analysis of the OAs is present in their 

design matrix. In such a case, a comparison 

can be made between the optimal process 

settings identified from the main and 

interaction effect analysis to the optimal 

process setting across the OA design matrix. 

The better response can then be selected 

based on the comparison.

 

Table 4. Summary of the results from the OAs, the SFP and the 3-level full factorial design 
Exp. 1 (XA). Exp. plans 9-run OA 18-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 15.81 22.4 22.45 22.45 

Run size 9 18 13 27 

Exp. 2a (NS). Exp. plans 9-run OA 18-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 27 27 31.60 31.60 

Run size 9 18 9 27 

Exp. 2b (NS). Exp. plans 9-run OA 18-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 7.51 7.51 6.80 6.80 

Run size 9 18 13 27 

Exp. 3 (ST). Exp. plans 9-run OA 18-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 1026 882 1249 1249 

Run size 9 18 13 27 

Exp. 4 (SR). Exp. plans 18-run OA 27-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 0.460 0.460 0.460 0.460 

Run size 18 27 17 81 

Exp. 5 (DF). Exp. plans 18-run OA 27-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 1.1401 1.1401 1.1383 1.1383 

Run size 18 27 17 81 

Exp. 6a (SAF). Exp. plans 18-run OA 27-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 0.315 0.245 0.270 0.245 

Run size 18 27 17 81 

Exp. 6b (STF). Exp. plans 18-run OA 27-run OA SFP Full factorial 

Response (units in U/ml) (L/B) 0.520 1.083 0.520 0.480 

Run size 18 27 25 81 

 

A second advantage of the SFP over the 18 

and 27-run OA is that in minimising the 

chances of exploring insignificant design 

spaces by means of the tests for curvature, the 

process performance can be improved by 

identifying anti-synergistic interactions with 

nine less experimental runs than the 18-run 

OA (for 33 full factorial experiments), one 

less experimental run than the 18-run OA (for 

34 full factorial experiments) and ten less 

experimental runs than the 27-run OA (for 34 

full factorial experiments).  Furthermore, the 

SFP will require less experimental runs than 

running two full factorial experiments at the 

high and low factor settings and, the medium 

and the best settings from the full factorial at 
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the high and low factor setting. For 33 

experiments, this strategy requires fewer 

experimental runs than the 18-run OA as it 

uses 15. Comparing the performance of this 

strategy to the OAs and the SFP (for 33 

experiments) showed it produced the same 

result as the SFP. 

In using the SFP, the most important factor 

across the first 2-level full factorial 

experiment and the full factorial involving the 

medium settings of the factors and their best 

setting from the first full factorial experiment 

may not be the same. In such a case, changing 

the most important factor to its medium 

setting at the best settings of other factors 

from the first full factorial experiment may 

produce sub optimal results as the response at 

the medium setting of the most important 

factor may be affected by anti-synergistic 

interactions. To minimise this, the factor 

settings should be evenly spaced out when 

possible. This can reduce the chances of 

choosing factor settings that do not reflect the 

true importance of the factors. Furthermore, if 

the most important factor obtained from the 

full factorial experiment at the high and low 

factor settings varies from that obtained from 

the 3-level full factorial experiment, the 

performance of the SFP may be affected by 

the choice of the most important factor.  

A disadvantage of the SFP compared to the 

OAs is that the optimal factor setting due to 

main effects in the full factorial experiment at 

the high and low factor settings may differ 

from those obtained from a 3-level full 

factorial experiment due to interactions. This 

is more likely to affect small main effects. 

This disadvantage also applies to the full 

factorial experiments involving the high and 

low factor settings and, the medium and the 

best settings from the full factorial at the high 

and low factor setting.  In such situations, 

when curvature is present and anti-synergistic 

interactions do not determine the optimal 

process setting, the OAs may outperform the 

SFP. 

 

4. Conclusion 
 

In summary, the SFP provides an option for 

economic experimentation without 

neglecting the influence of interactions on the 

system response. Although the SFP has its 

disadvantages, the SFP can be useful in 

situations where resources are scarce and 

process optimisation with minimal amount of 

resources is the primary objective.  

Future research will focus on identifying 

ways to better quantify the performance of the 

SFP. One way to do this is by characterising 

the relative probabilities of interactions which 

act opposite to and in the direction of main 

effects when the main effects are positively 

and negatively exploited. This way, the 

performance of the SFP can be quantified 

when the most important factor in the 3-level 

full factorial experiment and the full factorial 

involving the medium settings of the factors 

and their best setting from the first full 

factorial experiment are the same or 

otherwise.  
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Appendix: 
 

Start

Perform a 2-level full factorial 

experiment using the high and low 

settings of the factors

Obtain a centre 

point run

Use a statistical test for curvature and an m-c plot to 

determine the significance and direction of the 

curvature

Curvature 

present

Analyse the full factorial experiment to 

determine the important factor effects and 

identify the optimal process setting

No

Identify the most important factor from the full factorial 

experiment and vary it between its medium setting and its best 

setting from the full factorial experiment while keeping other 

factors at their best settings from the full factorial experiment

Yes

Keeping the most important factor at the setting that produced the best response, run a 

second 2-level full factorial experiment of the least important factors at their medium 

settings and their best settings from the first full factorial experiment

Identify the best response obtained across all experiments conducted and use 

the factor settings that produced it as the optimal process setting

End

Figure 2. A flow chart of the segmented fractional plan 
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